
TDA Progress Report 42-123 November 15, 1995

On the Design of Turbo Codes
D. Divsalar and F. Pollara

Communications Systems and Research Section

In this article, we design new turbo codes that can achieve near-Shannon-limit
performance. The design criterion for random interleavers is based on maximizing
the effective free distance of the turbo code, i.e., the minimum output weight of
codewords due to weight-2 input sequences. An upper bound on the effective free
distance of a turbo code is derived. This upper bound can be achieved if the feedback
connection of convolutional codes uses primitive polynomials. We review multiple
turbo codes (parallel concatenation of q convolutional codes), which increase the
so-called “interleaving gain” as q and the interleaver size increase, and a suitable
decoder structure derived from an approximation to the maximum a posteriori
probability decision rule. We develop new rate 1/3, 2/3, 3/4, and 4/5 constituent
codes to be used in the turbo encoder structure. These codes, for from 2 to 32
states, are designed by using primitive polynomials. The resulting turbo codes have
rates b/n, b=1, 2, 3, 4, and n=2, 3, 4, 5, 6 and include random interleavers for better
asymptotic performance. These codes are suitable for deep-space communications
with low throughput and for near-Earth communications where high throughput is
desirable. The performance of these codes is within 1 dB of the Shannon limit at a
bit-error rate of 10−6 for throughputs from 1/15 up to 4 bits/s/Hz.

I. Introduction

Coding theorists have traditionally attacked the problem of designing good codes by developing codes
with a lot of structure, which lends itself to feasible decoders, although coding theory suggests that
codes chosen “at random” should perform well if their block sizes are large enough. The challenge
to find practical decoders for “almost” random, large codes has not been seriously considered until
recently. Perhaps the most exciting and potentially important development in coding theory in recent
years has been the dramatic announcement of “turbo codes” by Berrou et al. in 1993 [7]. The announced
performance of these codes was so good that the initial reaction of the coding establishment was deep
skepticism, but recently researchers around the world have been able to reproduce those results [15,19,8].
The introduction of turbo codes has opened a whole new way of looking at the problem of constructing
good codes [5] and decoding them with low complexity [7,2].

Turbo codes achieve near-Shannon-limit error correction performance with relatively simple component
codes and large interleavers. A required Eb/N0 of 0.7 dB was reported for a bit-error rate (BER) of 10−5

for a rate 1/2 turbo code [7]. Multiple turbo codes (parallel concatenation of q > 2 convolutional codes)
and a suitable decoder structure derived from an approximation to the maximum a posteriori (MAP)
probability decision rule were reported in [9]. In [9], we explained for the first time the turbo decoding

99

scheme for multiple codes and its relation to the optimum bit decision rule, and we found rate 1/4 turbo
codes whose performance is within 0.8 dB of Shannon’s limit at BER=10−5.

In this article, we (1) design the best component codes for turbo codes of various rates by maximizing
the “effective free distance of the turbo code,” i.e., the minimum output weight of codewords due to
weight-2 input sequences; (2) describe a suitable trellis termination rule for b/n codes; (3) design low
throughput turbo codes for power-limited channels (deep-space communications); and (4) design high-
throughput turbo trellis-coded modulation for bandwidth-limited channels (near-Earth communications).

II. Parallel Concatenation of Convolutional Codes

The codes considered in this article consist of the parallel concatenation of multiple (q ≥ 2) con-
volutional codes with random interleavers (permutations) at the input of each encoder. This extends
the original results on turbo codes reported in [7], which considered turbo codes formed from just two
constituent codes and an overall rate of 1/2.

Figure 1 provides an example of parallel concatenation of three convolutional codes. The encoder
contains three recursive binary convolutional encoders with m1, m2, and m3 memory cells, respectively.
In general, the three component encoders may be different and may even have different rates. The first
component encoder operates directly (or through π1) on the information bit sequence u = (u1, · · · , uN)
of length N , producing the two output sequences x0 and x1. The second component encoder operates
on a reordered sequence of information bits, u2, produced by a permuter (interleaver), π2, of length N ,
and outputs the sequence x2. Similarly, subsequent component encoders operate on a reordered sequence
of information bits. The interleaver is a pseudorandom block scrambler defined by a permutation of N
elements without repetitions: A complete block is read into the the interleaver and read out in a specified
(fixed) random order. The same interleaver is used repeatedly for all subsequent blocks.

Figure 1 shows an example where a rate r = 1/n = 1/4 code is generated by three component codes
with memory m1 = m2 = m3 = m = 2, producing the outputs x0 = u, x1 = u · g1/g0, x2 = u2 · g1/g0,
and x3 = u3 · g1/g0 (here π1 is assumed to be an identity, i.e., no permutation), where the generator
polynomials g0 and g1 have octal representation (7)octal and (5)octal, respectively. Note that various code
rates can be obtained by proper puncturing of x1, x2, x3, and even x0 (for an example, see Section V).

We use the encoder in Fig. 1 to generate an (n(N +m), N) block code, where the m tail bits of code 2
and code 3 are not transmitted. Since the component encoders are recursive, it is not sufficient to set
the last m information bits to zero in order to drive the encoder to the all-zero state, i.e., to terminate
the trellis. The termination (tail) sequence depends on the state of each component encoder after N
bits, which makes it impossible to terminate all component encoders with m predetermined tail bits.
This issue, which had not been resolved in the original turbo code implementation, can be dealt with
by applying a simple method described in [8] that is valid for any number of component codes. A more
complicated method is described in [18].

A design for constituent convolutional codes, which are not necessarily optimum convolutional codes,
was originally reported in [5] for rate 1/n codes. In this article, we extend those results to rate b/n
codes. It was suggested (without proof) in [2] that good random codes are obtained if ga is a primitive
polynomial. This suggestion, used in [5] to obtain “good” rate 1/2 constituent codes, will be used in this
article to obtain “good” rate 1/3, 2/3, 3/4, and 4/5 constituent codes. By “good” codes we mean codes
with a maximum effective free distance def , those codes that maximize the minimum output weight for
weight-2 input sequences, as discussed in [9], [13], and [5] (because this weight tends to dominate the
performance characteristics over the region of interest).

100

u x0

x1

x2

x3

π2

D D

ENCODER 1

D D

ENCODER 2

D D

ENCODER 3

u3

u2

π3

π1
u1

Fig. 1. Example of encoder with three codes.

III. Design of Constituent Encoders

As discussed in the previous section, maximizing the weight of output codewords corresponding to
weight-2 data sequences gives the best BER performance for a moderate bit signal-to-noise ratio (SNR)
as the random interleaver size N gets large. In this region, the dominant term in the expression for bit
error probability of a turbo code with q constituent encoders is

Pb ≈
β

Nq−1
Q


√√√√√2r

Eb
N0

 q∑
j=1

dpj,2 + 2




where dpj,2 is the minimum parity-weight (weight due to parity checks only) of the codewords at the
output of the jth constituent code due to weight-2 data sequences, and β is a constant independent of
N . Define dj,2 = dpj,2 + 2 as the minimum output weight including parity and information bits, if the jth
constituent code transmits the information (systematic) bits. Usually one constituent code transmits the
information bits (j = 1), and the information bits of others are punctured. Define def =

∑q
j=1 d

p
j,2 +2 as

the effective free distance of the turbo code and 1/Nq−1 as the “interleaver’s gain.” We have the following
bound on dp2 for any constituent code.

Theorem 1. For any r = b/(b+ 1) recursive systematic convolutional encoder with generator matrix

G =



h1(D)
h0(D)

h2(D)
h0(D)

Ib×b ·
·

hb(D)
h0(D)


101

where Ib×b is a b × b identity matrix, deg[hi(D)] ≤ m, hi(D) 6= h0(D), i = 1, 2, · · · , b, and h0(D) is a
primitive polynomial of degree m, the following upper bound holds:

dp2 ≤ b
2m−1

b
c+ 2

Proof. In the state diagram of any recursive systematic convolutional encoder with generator matrix
G, there exist at least two nonoverlapping loops corresponding to all-zero input sequences. If h0(D) is a
primitive polynomial, there are two loops: one corresponding to zero-input, zero-output sequences with
branch length one, and the other corresponding to zero-input but nonzero-output sequences with branch
length 2m − 1, which is the period of maximal length (ML) linear feedback shift registers (LFSRs) [14]
with degree m. The parity codeword weight of this loop is 2m−1, due to the balance property [14] of ML
sequences. This weight depends only on the degree of the primitive polynomial and is independent of
hi(D), due to the invariance to initial conditions of ML LFSR sequences. In general, the output of the
encoder is a linear function of its input and current state. So, for any output we may consider, provided
it depends on at least one component of the state and it is not h0(D), the weight of a zero-input loop is
2m−1, by the shift-and-add property of ML LFSRs.

+

+

A

u2

u1

A

B

B

h 20 h 21 h 22 h 23
x2

h 10 h 11 h 12 h 13
x1

h 00 h 01 h 02 h 03

x0

a 10

a 20
a 11

a 21
a 12

a 22

D + + +D D

+

+

+

+

+

Fig. 2. Canonical representation of a rate (b + 1)/b encoder (b = 2, m = 3).

Consider the canonical representation of a rate (b + 1)/b encoder [20] as shown in Fig. 2 when the
switch is in position A. Let Sk(D) be the state of the encoder at time k with coefficients Sk0 , S

k
1 , · · · , Skm−1,

where the output of the encoder at time k is

X = Sk−1
m−1 +

b∑
i=1

uki hi,m (1)

The state transition for input uk1 , · · · , ukb at time k is given by

Sk(D) =

[
b∑
i=1

uki hi(D) +DSk−1(D)

]
mod h0(D) (2)

From the all-zero state, we can enter the zero-input loop with nonzero input symbols u1, · · · , ub at state

102

S1(D) =
b∑
i=1

uihi(D) mod h0(D) (3)

From the same nonzero input symbol, we leave exactly at state S2m−1(D) back to the all-zero state,
where S2m−1(D) satisfies

S1(D) = DS2m−1(D) mod h0(D) (4)

i.e., S2m−1(D) is the “predecessor” to state S1(D) in the zero-input loop. If the most significant bit of
the predecessor state is zero, i.e., S2m−1

m−1 = 0, then the branch output for the transition from S2m−1(D)
to S1(D) is zero for a zero-input symbol. Now consider any weight-1 input symbol, i.e., uj = 1 for j = i
and uj = 0 for j 6= i, j = 1, 2, · · · , b. The question is: What are the conditions on the coefficients hi(D)
such that, if we enter with a weight-1 input symbol into the zero-input loop at state S1(D), the most
significant bit of the “predecessor” state S2m−1(D) is zero. Using Eqs. (3) and (4), we can establish that

hi0 + hi,m = 0 (5)

Obviously, when we enter the zero-input loop from the all-zero state and when we leave this loop to go
back to the all-zero state, we would like the parity output to be equal to 1. From Eqs. (1) and (5), we
require

hi0 = 1

hi,m = 1

 (6)

With this condition, we can enter the zero-input loop with a weight-1 symbol at state S1(D) and then
leave this loop from state S2m−1(D) back to the all-zero state, for the same weight-1 input. The parity
weight of the codeword corresponding to weight-2 data sequences is then 2m−1 + 2, where the first term
is the weight of the zero-input loop and the second term is due to the parity bit appearing when entering
and leaving the loop. If b = 1, the proof is complete, and the condition to achieve the upper bound is
given by Eq. (6). For b = 2, we may enter the zero-input loop with u = 10 at state S1(D) and leave the
loop to the zero state with u = 01 at some state Sj(D). If we can choose Sj(D) such that the output
weight of the zero-input loop from S1(D) to Sj(D) is exactly 2m−1/2, then the output weight of the
zero-input loop from Sj+1(D) to S2m−1(D) is exactly 2m−1/2, and the minimum weight of codewords
corresponding to some weight-2 data sequences is

2m−1

2
+ 2

In general, for any b, if we extend the procedure for b = 2, the minimum weight of the codewords
corresponding to weight-2 data sequences is

b2
m−1

b
c+ 2 (7)

where bxc is the largest integer less than or equal to x. Clearly, this is the best achievable weight for the
minimum-weight codeword corresponding to weight-2 data sequences. This upper bound can be achieved

103

if the maximum run length of 1’s (m) in the zero-input loop does not exceed b2m−1/bc. If m > b2m−1/bc,
then the minimum weight of the codewords corresponding to weight-2 data sequences will be strictly less
than b2m−1/bc+ 2.

The run property of ML LFSRs [14] can help us in designing codes achieving this upper bound.
Consider only runs of 1’s with length l for 0 < l < m− 1; then there are 2m−2−l runs of length l, no runs
of length m− 1, and only one run of length m. ❐

Corollary 1. For any r = b/n recursive systematic convolutional code with b inputs, b systematic
outputs, and n− b parity output bits using a primitive feedback generator, we have

dp2 ≤ b
(n− b)2m−1

b
c+ 2(n− b) (8)

Proof. The total output weight of a zero-input loop due to parity bits is (n − b)2M−1. In this zero-
input loop, the largest minimum weight (due to parity bits) for entering and leaving the loop with any
weight-1 input symbol is [(n− b)2M−1]/b. The output weight due to parity bits for entering and leaving
the zero-input loop (both into and from the all-zero state) is 2(n− b). ❐

There is an advantage to using b > 1, since the bound in Eq. (8) for rate b/bn codes is larger than the
bound for rate 1/n codes. Examples of codes are found that meet the upper bound for b/bn codes.

A. Best Rate b/b + 1 Constituent Codes

We obtained the best rate 2/3 codes as shown in Table 1, where d2 = dp2 + 2. The minimum-weight
codewords corresponding to weight-3 data sequences are denoted by d3, dmin is the minimum distance
of the code, and k = m + 1 in all the tables. By “best” we mean only codes with a large d2 for a given
m that result in a maximum effective free distance. We obtained the best rate 3/4 codes as shown in
Table 2 and the best rate 4/5 codes as shown in Table 3.

Table 1. Best rate 2/3 constituent codes.

k Code generator d2 d3 dmin

3 h0 = 7 h1 = 3 h2 = 5 4 3 3

4 h0 = 13 h1 = 15 h2 = 17 5 4 4

5 h0 = 23 h1 = 35 h2 = 27 8 5 5

h0 = 23 h1 = 35 h2 = 33 8 5 5

6 h0 = 45 h1 = 43 h2 = 61 12 6 6

Table 2. Best rate 3/4 constituent codes.

k Code generator d2 d3 dmin

3 h0 = 7 h1 = 5 h2 = 3 h3 = 1 3 3 3

h0 = 7 h1 = 5 h2 = 3 h3 = 4 3 3 3

h0 = 7 h1 = 5 h2 = 3 h3 = 2 3 3 3

4 h0 = 13 h1 = 15 h2 = 17 h3 = 11 4 4 4

5 h0 = 23 h1 = 35 h2 = 33 h3 = 25 5 4 4

h0 = 23 h1 = 35 h2 = 27 h3 = 31 5 4 4

h0 = 23 h1 = 35 h2 = 37 h3 = 21 5 4 4

h0 = 23 h1 = 27 h2 = 37 h3 = 21 5 4 4

104

Table 3. Best rate 4/5 constituent codes.

k Code generator d2 d3 dmin

4 h0 = 13 h1 = 15 h2 = 17 h3 = 11 h4 = 7 4 3 3

h0 = 13 h1 = 15 h2 = 17 h3 = 11 h4 = 5 4 3 3

5 h0 = 23 h1 = 35 h2 = 33 h3 = 37 h4 = 31 5 4 4

h0 = 23 h1 = 35 h2 = 27 h3 = 37 h4 = 31 5 4 4

h0 = 23 h1 = 35 h2 = 21 h3 = 37 h4 = 31 5 4 4

A
u

B

g 20 g 21 g 22 g 23
x2

g 10 g 11 g 12 g 13
x1

g 00 g 01 g 02 g 03

x0

+ D D D

+

+

+

+ +

+

+ +

Fig. 3. Rate 1/n code.

B. Trellis Termination for b/n Codes

Trellis termination is performed (for b = 2, as an example) by setting the switch shown in Fig. 2
in position B. The tap coefficients ai0, · · · , ai,m−1 for i = 1, 2, · · · , b can be obtained by repeated use of
Eq. (2) and by solving the resulting equations. The trellis can be terminated in state zero with at least
m/b and at most m clock cycles. When Fig. 3 is extended to multiple input bits (b parallel feedback shift
registers), a switch should be used for each input bit.

C. Best Punctured Rate 1/2 Constituent Codes

A rate 2/3 constituent code can be derived by puncturing the parity bit of a rate 1/2 recursive
systematic convolutional code using, for example, a pattern P = [10]. A puncturing pattern P has zeros
where parity bits are removed.

Consider a rate 1/2 recursive systematic convolutional code (1, g1(D)/(g0(D)). For an input u(D),
the parity output can be obtained as

x(D) =
u(D)g1(D)
g0(D)

(9)

We would like to puncture the output x(D) using, for example, the puncturing pattern P [10] (decimation
by 2) and obtain the generator polynomials h0(D), h1(D), and h2(D) for the equivalent rate 2/3 code:

G =


1 0

h1(D)
h0(D)

0 1
h2(D)
h0(D)


105

We note that any polynomial f(D) =
∑
aiD

i, ai ∈ GF (2), can be written as

f(D) = f1(D2) +Df2(D2) (10)

where f1(D2) corresponds to the even power terms of f(D), and Df2(D2) corresponds to the odd power
terms of f(D). Now, if we use this approach and apply it to the u(D), g1(D), and g0(D), then we can
rewrite Eq. (9) as

x1

(
D2

)
+Dx2

(
D2

)
=

(
u1

(
D2

)
+Du2

(
D2

)) (
g11

(
D2

)
+Dg12

(
D2

))
g01 (D2) +Dg02 (D2)

(11)

where x1(D) and x2(D) correspond to the punctured output x(D) using puncturing patterns P [10] and
P [01], respectively. If we multiply both sides of Eq. (11) by (g01(D2) +Dg02(D2)) and equate the even
and the odd power terms, we obtain two equations in two unknowns, namely x1(D) and x2(D). For
example, solving for x1(D), we obtain

x1(D) = u1(D)
h1(D)
h0(D)

+ u2(D)
h2(D)
h0(D)

(12)

where h0(D) = g0(D) and

h1(D) = g11(D)g01(D) +Dg12(D)g02(D)

h2(D) = Dg12(D)g01(D) +Dg11(D)g02(D)

 (13)

From the second equation in Eq. (13), it is clear that h2,0 = 0. A similar method can be used to show
that for P[01] we get h1,m = 0. These imply that the condition of Eq. (6) will be violated. Thus, we have
the following theorem.

Theorem 2. If the parity puncturing pattern is P = [10] or P = [01], then it is impossible to achieve
the upper bound on d2 = dp2 + 2 for rate 2/3 codes derived by puncturing rate 1/2 codes.

The best rate 1/2 constituent codes with puncturing pattern P = [10] that achieve the largest d2 are
given in Table 4.

Table 4. Best rate 1/2 punctured
constituent codes.

k Code generator d2 d3 dmin

3 g0 = 7 g1 = 5 4 3 3

4 g0 = 13 g1 = 15 5 4 4

5 g0 = 23 g1 = 37 7 4 4

g0 = 23 g1 = 31 7 4 4

g0 = 23 g1 = 33 6 5 5

g0 = 23 g1 = 35 6 4 4

g0 = 23 g1 = 27 6 4 4

106

D. Best Rate 1/ n Constituent Codes

For rate 1/n codes, the upper bound in Eq. (7) for b = 1 reduces to

dp2 ≤ (n− 1)(2m−1 + 2)

This upper bound was originally derived in [5], where the best rate 1/2 constituent codes meeting the
bound were obtained. Here we present a simple proof based on our previous general result on rate b/n
codes. Then we obtain the best rate 1/3 and 1/4 codes.

Theorem 3. For rate 1/n recursive systematic convolutional codes with primitive feedback, we have

dp2 ≤ (n− 1)(2m−1 + 2)

Proof. Consider a rate 1/n code, shown in Fig. 3. In this figure, g0(D) is assumed to be a primitive
polynomial. As discussed above, the output weight of the zero-input loop for parity bits is 2m−1 inde-
pendent of the choice of gi(D), i = 1, 2, · · · , n − 1, provided that gi(D) 6= 0 and that gi(D) 6= g0(D), by
the shift-and-add and balance properties of ML LFSRs. If S(D) represents the state polynomial, then
we can enter the zero-input loop only at state S1(D) = 1 and leave the loop to the all-zero state at state
S2m−1(D) = Dm−1. The ith parity output on the transition S2m−1(D)→ S1(D) with a zero input bit is

xi = gi0 + gi,m

If gi0 = 1 and gi,m = 1 for i = 1, · · · , n − 1, the output weight of the encoder for that transition is zero.
The output weight due to the parity bits when entering and leaving the zero-input loop is (n − 1) for
each case. In addition, the output weight of the zero-input loop will be (n − 1)2m−1 for (n − 1) parity
bits. Thus, we established the upper bound on dp2 for rate 1/n codes. ❐

We obtained the best rate 1/3 and 1/4 codes without parity repetition, as shown in Tables 5 and 6,
where d2 = dp2 + 2 represents the minimum output weight given by weight-2 data sequences. The best
rate 1/2 constituent codes are given by g0 and g1 in Table 5, as was also reported in [5].

Table 5. Best rate 1/3 constituent codes.

k Code generator d2 d3 dmin

2 g0 = 3 g1 = 2 g2 = 1 4 ∞ 4

3 g0 = 7 g1 = 5 g2 = 3 8 7 7

4 g0 = 13 g1 = 17 g2 = 15 14 10 10

5 g0 = 23 g1 = 33 g2 = 37 22 12 10

g0 = 23 g1 = 25 g2 = 37 22 11 11

107

Table 6. Best rate 1/4 constituent codes.

k Code generator d2 d3 dmin

4 g0 = 13 g1 = 17 g2 = 15 g3 = 11 20 12 12

5 g0 = 23 g1 = 35 g2 = 27 g3 = 37 32 16 14

g0 = 23 g1 = 33 g2 = 27 g3 = 37 32 16 14

g0 = 23 g1 = 35 g2 = 33 g3 = 37 32 16 14

g0 = 23 g1 = 33 g2 = 37 g3 = 25 32 15 15

E. Recursive Systematic Convolutional Codes With a Nonprimitive Feedback Polynomial

So far, we assumed that the feedback polynomial for recursive systematic convolutional code is a
primitive polynomial. We could ask whether it is possible to exceed the upper bound given in Theorem 1
and Corollary 1 by using a nonprimitive polynomial. The answer is negative, thanks to a new theorem
by Solomon W. Golomb (Appendix).

Theorem 4.1 For any rate 1/n linear recursive systematic convolutional code generated by a non-
primitive feedback polynomial, the upper bound in Theorem 3 cannot be achieved, i.e.,

dp2 < (n− 1)(2m−1 + 2)

Proof. Using the results of Golomb (see the Appendix) for a nonprimitive feedback polynomial, there
are more than two cycles (zero-input loops) in LFSR. The “zero cycle” has weight zero, and the weights
of other cycles are nonzero. Thus, the weight of each cycle due to the results of the Appendix is strictly
less than (n− 1)2m−1. If we enter from the all-zero state with input weight-1 to one of the cycles of the
shift register, then we have to leave the same cycle to the all-zero state with input weight-1, as discussed
in Theorem 1. Thus, dp2 < (n− 1)(2m−1 + 2). ❐

Theorem 5. For any rate b/b+ 1 linear recursive systematic convolutional code generated by a
nonprimitive feedback polynomial, the upper bound in Theorem 1 cannot be exceeded, i.e.,

dp2 ≤ b
2m−1

b
c+ 2

Proof. Again using the results of the Appendix, there is a “zero cycle” with weight zero and at least
two cycles with nonzero weights, say q cycles with weights w1, w2, · · · , wq. The sum of the weights of all
cycles is exactly 2m−1, i.e.,

∑
wi = 2m−1. For a b/b+ 1 code, we have b weight-1 symbols. Suppose that

with bi of these weight-1 symbols we enter from the all-zero state to the ith cycle with weight wi; then we
have to leave the same cycle to the all-zero state with the same bi symbols for i = 1, 2, · · · , q, such that∑
bi = b. Based on the discussion in the proof of Theorem 1, the largest achievable minimum output

weight of codewords corresponding to weight-2 sequences is min(w1/b1, w2/b2, · · · , wq/bq) + 2. But it is
easy to show that min(w1/b1, w2/b2, · · · , wq/bq) ≤ (

∑
wi/

∑
bi) = 2m−1/b. ❐

1 The proofs of Theorems 4 and 5 are based on a result by S. W. Golomb (see the Appendix), University of Southern
California, Los Angeles, California, 1995. Theorem 4 and Corollary 2 were proved for more general cases when the
code is generated by multiple LFSRs by R. J. McEliece, Communications Systems and Research Section, Jet Propulsion
Laboratory, Pasadena, California, and California Institute of Technology, Pasadena, California, 1995, using a state-space
approach.

108

Corollary 2. For any rate b/n linear recursive systematic convolutional code generated by a non-
primitive feedback polynomial, the upper bound in Corollary 1 cannot be exceeded.

Proof. The proof is similar to the Proof of Theorem 5, but now
∑
wi = (n− b)2m−1. ❐

IV. Turbo Decoding for Multiple Codes

In [9] we described a new turbo decoding scheme for q codes based on approximating the optimum
bit decision rule. The scheme is based on solving a set of nonlinear equations given by (q = 3 is used to
illustrate the concept)

L̃0k = 2ρy0k

L̃1k = log

∑
u:uk=1 P (y1|u)

∏
j 6=k e

uj(L̃0j+L̃2j+L̃3j)∑
u:uk=0 P (y1|u)

∏
j 6=k e

uj(L̃0j+L̃2j+L̃3j)

L̃2k = log

∑
u:uk=1 P (y2|u)

∏
j 6=k e

uj(L̃0j+L̃1j+L̃3j)∑
u:uk=0 P (y2|u)

∏
j 6=k e

uj(L̃0j+L̃1j+L̃3j)

L̃3k = log

∑
u:uk=1 P (y3|u)

∏
j 6=k e

uj(L̃0j+L̃1j+L̃2j)∑
u:uk=0 P (y3|u)

∏
j 6=k e

uj(L̃0j+L̃1j+L̃2j)



(14)

for k = 1, 2, · · · , N . In Eq. (14), L̃ik represents extrinsic information and yi, i = 0, 1, 2, 3 are the received
observation vectors corresponding to xi, i = 0, 1, 2, 3 (see Fig. 1), where ρ =

√
2rEb/N0, if we assume

the channel noise samples have unit variance per dimension. The final decision is then based on

Lk = L̃0k + L̃1k + L̃2k + L̃3k (15)

which is passed through a hard limiter with a zero threshold.

The above set of nonlinear equations is derived from the optimum bit decision rule, i.e.,

Lk = log

∑
u:uk=1 P (y0|u)P (y1|u)P (y2|u)P (y3|u)∑
u:uk=0 P (y0|u)P (y1|u)P (y2|u)P (y3|u)

(16)

using the following approximation:

P (u|yi) ≈
N∏
k=1

eukL̃ik

1 + eL̃ik
(17)

Note that, in general, P (u|yi) is not separable. The smaller the Kullback cross entropy [3,17] between
right and left distributions in Eq. (17), the better is the approximation and, consequently, the closer is
turbo decoding to the optimum bit decision.

109

We attempted to solve the nonlinear equations in Eq. (14) for L̃1, L̃2, and L̃3 by using the iterative
procedure

L̃
(m+1)
1k = α

(m)
1 log

∑
u:uk=1 P (y1|u)

∏
j 6=k e

uj(L̃0j+L̃
(m)
2j +L̃

(m)
3j)∑

u:uk=0 P (y1|u)
∏
j 6=k e

uj(L̃0j+L̃
(m)
2j +L̃

(m)
3j)

(18)

for k = 1, 2, · · · , N , iterating on m. Similar recursions hold for L̃(m)
2k and L̃

(m)
3k . The gain α

(m)
1 should

be equal to one, but we noticed experimentally that better convergence can be obtained by optimizing
this gain for each iteration, starting from a value less than 1 and increasing toward 1 with the iterations,
as is often done in simulated annealing methods. We start the recursion with the initial condition2

L̃(0)
1 = L̃(0)

2 = L̃(0)
3 = L̃0. For the computation of Eq. (18), we use a modified MAP algorithm3 with

permuters (direct and inverse) where needed, as shown in Fig. 4. The MAP algorithm [1] always starts
and ends at the all-zero state since we always terminate the trellis as described in [8]. We assumed π1 = I
(identity); however, any π1 can be used. The overall decoder is composed of block decoders connected
as in Fig. 4, which can be implemented as a pipeline or by feedback. In [10] and [11], we proposed an
alternative version of the above decoder that is more appropriate for use in turbo trellis-coded modulation,
i.e., set L̃0 = 0 and consider y0 as part of y1. If the systematic bits are distributed among encoders, we
use the same distribution for y0 among the MAP decoders.

Σ

DELAY

L0

L3(m)

L2(m)

L1k L1(m + 1)

y1

π1+
MAP 1

OR
SOVA 1

π1–1

DELAY
L1(m)

L3(m)

L2k L2(m + 1)

y2

π2+
MAP 2

OR
SOVA 2

π2–1

+

+

–

–

DELAY
L2(m)

L1(m)

L3k L3(m + 1)

y3

π3+
MAP 3

OR
SOVA 3

π3–1
+

–

DECODED BITS
Lk

Fig. 4. Multiple turbo decoder structure.

~

~

~

~

~

~

~

~

~

~

2 Note that the components of the L̃i’s corresponding to the tail bits, i.e., L̃ik for k = N + 1, · · · , N +Mi, are set to zero
for all iterations.

3 The modified MAP algorithm is described in S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-Output
Decoding Algorithms in Iterative Decoding of Parallel Concatenated Convolutional Codes,” submitted to ICC ’96.

110

At this point, further approximation for turbo decoding is possible if one term corresponding to a
sequence u dominates other terms in the summation in the numerator and denominator of Eq. (18).
Then the summations in Eq. (18) can be replaced by “maximum” operations with the same indices, i.e.,
replacing

∑
u:uk=i

with max
u:uk=i

for i = 0, 1. A similar approximation can be used for L̃2k and L̃3k in
Eq. (14). This suboptimum decoder then corresponds to a turbo decoder that uses soft output Viterbi
(SOVA)-type decoders rather than MAP decoders. Further approximations, i.e., replacing

∑
with max,

can also be used in the MAP algorithm.4

A. Decoding Multiple Input Convolutional Codes

If the rate b/n constituent code is not equivalent to a punctured rate 1/n′ code or if turbo trellis-coded
modulation is used, we can first use the symbol MAP algorithm5 to compute the log-likelihood ratio of
a symbol u = u1, u2, · · · , ub given the observation y as

λ(u) = log
P (u|y)
P (0|y)

where 0 corresponds to the all-zero symbol. Then we obtain the log-likelihood ratios of the jth bit within
the symbol by

L(uj) = log

∑
u:uj=1 e

λ(u)∑
u:uj=0 e

λ(u)

In this way, the turbo decoder operates on bits, and bit, rather than symbol, interleaving is used.

V. Performance and Simulation Results

The BER performance of these codes was evaluated by using transfer function bounds [4,6,12]. In [12],
it was shown that transfer function bounds are very useful for SNRs above the cutoff rate threshold and
that they cannot accurately predict performance in the region between cutoff rate and capacity. In this
region, the performance was computed by simulation.

Figure 5 shows the performance of turbo codes withm iterations and an interleaver size of N = 16, 384.
The following codes are used as examples:

(1) Rate 1/2 Turbo Codes.

Code A: Two 16-state, rate 2/3 constituent codes are used to construct a rate 1/2 turbo
code as shown in Fig. 6. The (worst-case) minimum codeword weights, di, corresponding
to a weight-i input sequence for this code are def=14, d3=7, d4=8, d5=5=dmin, and
d6=6.

4 Ibid.

5 Ibid.

111

Code B: A rate 1/2 turbo code also was constructed by using a differential encoder and a
32-state, rate 1/2 code, as shown in Fig. 7. This is an example where the systematic bits
for both encoders are not transmitted. The (worst-case) minimum codeword weights, di,
corresponding to a weight-i input sequence for this code are def=19, d4=6=dmin, d6=9,
d8=8, and d10=11. The output weights for odd i are large.

(2) Rate 1/3 Turbo Code.

Code C: Two 16-state, rate 1/2 constituent codes are used to construct a rate 1/3 turbo
code as shown in Fig. 8. The (worst-case) minimum codeword weights, di, corresponding
to a weight-i input sequence for this code are def=22, d3 = 11, d4=12, d5 = 9 = dmin,
d6=14, and d7=15.

(3) Rate 1/4 Turbo Code.

Code D: Two 16-state, rate 1/2 and rate 1/3 constituent codes are used to construct
a rate 1/4 turbo code, as shown in Fig. 9, with def = 32, d3 = 15 = dmin, d4 = 16,
d5 = 17, d6 = 16, and d7 = 19.

(4) Rate 1/15 Turbo Code.

Code E: Two 16-state, rate 1/8 constituent codes are used to construct a rate 1/15
turbo code, (1, g1/g0, g2/g0, g3/g0, g4/g0, g5/g0, g6/g0, g7/g0) and (g1/g0, g2/g0, g3/g0, g4/
g0, g5/g0, g6/g0, g7/g0), with g0 = (23)octal, g1 = (21)octal, g2 = (25)octal, g3 = (27)octal,
g4 = (31)octal, g5 = (33)octal, g6 = (35)octal, and g7 = (37)octal. The (worst-case)
minimum codeword weights, di, corresponding to a weight i input sequence for this code
are def=142, d3=39=dmin, d4=48, d5=45, d6=50, and d7=63.

The simulation performance of other codes reported in this article is still in progress.

10–6
–0.8–1.0 –0.6 –0.4 –0.2 0.0 0.2 0.4 0.6 0.8 1.0

10–5

10–4

10–3

10–2

10–1

100

CODE F
RATE = 1/15
m = 12

CODE C
RATE = 1/3
m = 11

CODE B
RATE = 1/2

m = 18

CODE A
RATE = 1/2

m = 12

B
E

R

Eb
/N 0, dB

Fig. 5. Performance of turbo codes.

CODE D
RATE = 1/4

m = 13

112

+

+

+ + + + +D D D D

π2 π1

+

u2

u1

A

BA

B

A

A B

B

+D D + D + D +

+

+

Fig. 6. Rate 1/2 turbo code constructed from two codes (h 0 = 23, h 1 = 35, h 2 = 33).

INPUT DATA
DIFFERENTIAL ENCODER

D

D D D D D

16,384-bit
INTERLEAVER

Fig. 7. Rate 1/2 turbo code constructed from a differential encoder and code
(g 0 = 67, g 1 = 73).

VI. Turbo Trellis-Coded Modulation

A pragmatic approach for turbo codes with multilevel modulation was proposed in [16]. Here we
propose a different approach that outperforms the results in [16] when M-ary quadrature amplitude
modulation (M-QAM) or M-ary phase shift keying (MPSK) modulation is used. A straightforward
method for the use of turbo codes for multilevel modulation is first to select a rate b/(b+ 1) constituent
code, where the outputs are mapped to a 2b+1-level modulation based on Ungerboeck’s set partitioning
method [21] (i.e., we can use Ungerboeck’s codes with feedback). If MPSK modulation is used, for every b
bits at the input of the turbo encoder, we transmit two consecutive 2b+1 phase-shift keying (PSK) signals,
one per each encoder output. This results in a throughput of b/2 bits/s/Hz. If M-QAM modulation is

113

INPUT DATA

D D D

D

D

DD D

16,384-bit
INTERLEAVER

Fig. 8. Rate 1/3 turbo code constructed from two identical codes
(g 0 = 23, g 1 = 33).

16,384-bit
INTERLEAVER

INPUT DATA

D D D

D D D D

Fig. 9. Rate 1/4 turbo code constructed from two codes
(g 0 = 23, g 1 = 33) and (g 0 = 23, g 1 = 37, g 2 = 25).

D

used, we map the b + 1 outputs of the first component code to the 2b+1 in-phase levels (I-channel) of a
22b+2-QAM signal set and the b+ 1 outputs of the second component code to the 2b+1 quadrature levels
(Q-channel). The throughput of this system is b bits/s/Hz.

First, we note that these methods require more levels of modulation than conventional trellis-coded
modulation (TCM), which is not desirable in practice. Second, the input information sequences are used
twice in the output modulation symbols, which also is not desirable. An obvious remedy is to puncture
the output symbols of each trellis code and select the puncturing pattern such that the output symbols
of the turbo code contain the input information only once. If the output symbols of the first encoder are

114

punctured, for example as 101010 · · ·, the puncturing pattern of the second encoder must be nonuniform
to guarantee that all information symbols are used, and it depends on the particular choice of interleaver.
Now, for example, for 2b+1 PSK, a throughput b can be achieved. This method has two drawbacks: It
complicates the encoder and decoder, and the reliability of punctured symbols may not be fully estimated
at the decoder. A better remedy, for rate b/(b+ 1) (b even) codes, is discussed in the next section.

A. A New Method to Construct Turbo TCM

For a q = 2 turbo code with rate b/(b+1) constituent encoders, select the b/2 systematic outputs and
puncture the rest of the systematic outputs, but keep the parity bit of the b/(b+ 1) code (note that the
rate b/(b+ 1) code may have been obtained already by puncturing a rate 1/2 code). Then do the same
to the second constituent code, but select only those systematic bits that were punctured in the first
encoder. This method requires at least two interleavers: The first interleaver permutes the bits selected
by the first encoder and the second interleaver those punctured by the first encoder. For MPSK (or
M-QAM), we can use 21+b/2 PSK symbols (or 21+b/2 QAM symbols) per encoder and achieve throughput
b/2. For M-QAM, we can also use 21+b/2 levels in the I-channel and 21+b/2 levels in the Q-channel and
achieve a throughput of b bits/s/Hz. These methods are equivalent to a multidimensional trellis-coded
modulation scheme (in this case, two multilevel symbols per branch) that uses 2b/2 × 21+b/2 symbols per
branch, where the first symbol in the branch (which depends only on uncoded information) is punctured.
Now, with these methods, the reliability of the punctured symbols can be fully estimated at the decoder.
Obviously, the constituent codes for a given modulation should be redesigned based on the Euclidean
distance. In this article, we give an example for b = 2 with 16-QAM modulation where, for simplicity,
we can use the 2/3 codes in Table 1 with Gray code mapping. Note that this may result in suboptimum
constituent codes for multilevel modulation. The turbo encoder with 16 QAM and two clock-cycle trellis
termination is shown in Fig. 10. The BER performance of this code with the turbo decoding structure
for two codes discussed in Section IV is given in Fig. 11. For permutations π1 and π2, we used S-random
permutations [9] with S = 40 and S = 32, with a block size of 16,384 bits. For 8 PSK, we used two
16-state, rate 4/5 codes given in Section V to achieve throughput 2. The parallel concatenated trellis
codes with 8 PSK and two clock-cycle trellis termination is shown in Fig. 12. The BER performance of
this code is given in Fig. 13. For 64 QAM, we used two 16-state, rate 4/5 codes given in Section V to
achieve throughput 4. The parallel concatenated trellis codes with 64 QAM and two clock-cycle trellis
termination is shown in Fig. 14. The BER performance of this code is given in Fig. 15. For permutations
π1, π2, π3, and π4 in Figs. 10, 12, and 14, we used random permutations, each with a block size of 4096
bits. As was discussed above, there is no need to use four permutations; two permutations suffice, and
they may even result in a better performance. Extension of the described method for construction of
turbo TCM based on Euclidean distance is straightforward.6

VII. Conclusions

In this article, we have shown that powerful turbo codes can be obtained if multiple constituent codes
are used. We reviewed an iterative decoding method for multiple turbo codes by approximating the
optimum bit decision rule. We obtained an upper bound on the effective free Euclidean distance of b/n
codes. We found the best rate 2/3, 3/4, 4/5, and 1/3 constituent codes that can be used in the design
of multiple turbo codes. We proposed new schemes that can be used for power- and bandwidth-efficient
turbo trellis-coded modulation.

6 This is discussed in S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Parallel Concatenated Trellis Coded Modu-
lation,” submitted to ICC ’96.

115

+ D D D D

π2 π1

u2

u1

A

BA

B

A

A B

B

D D D D

+
+

+ + + + +

+
+

+ + + +

16
QAM

Fig. 10. Turbo trellis-coded modulation, 16 QAM, 2 bits/s/Hz.

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2
10–5

10–4

10–3

10–2

10–1

Eb / N0, dB

B
E

R

Fig. 11. BER performance of turbo trellis-coded modulation,
16 QAM, 2 bits/s/Hz.

m = 4

m = 5

m = 6

m = 9

116

D

π3 π2 π1

+

u2

u1

A

u3

u4

π4

D D D

D DDD

+ + + +

++++

+

+

+

+
+

8 PSK
×

8 PSK

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

Fig. 12. Parallel concatenated trellis-coded modulation, 8 PSK, 2 bits/s/Hz.

0

0

0

0

10–2

10–3

10–4

10–5

10–6

m = 8

m = 5

3.83.73.63.53.43.3

B
E

R

BIT SNR, dB

Fig. 13. BER performance of parallel con-
catenated trellis-coded modulation, 8 PSK,
2 bits/s/Hx.

117

D

π3 π2 π1

+

u2

u1

A

u3

u4

π4

D D D

D DDD

+ + + +

++++

+

+

+

+
+

64
QAM

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

Fig. 14. Parallel concatenated trellis-coded modulation, 64 QAM, 4 bits/s/Hz.

0

0

0

0

10–1

10–2

10–3

10–4

10–5

10–6
7.0 7.1 7.2 7.3 7.4 7.5 7.6

B
E

R

Eb / N0, dB

Fig. 15. BER performance of parallel concatenated trellis-
coded modulation, 64 QAM, 4 bits/s/Hz.

m = 5

m = 6

m = 10

118

Acknowledgments

The authors are grateful to S. Dolinar and R. J. McEliece for their helpful com-
ments throughout this article, to S. Benedetto and G. Montorsi for their helpful
comments on the turbo trellis-coded modulation section, and special thanks to
S. W. Golomb for his contribution, as reported in the Appendix.

References

[1] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear
Codes for Minimizing Symbol Error Rate,” IEEE Trans. Inform. Theory, vol.
IT-20, pp. 284–287, 1974.

[2] G. Battail, C. Berrou, and A. Glavieux, “Pseudo-Random Recursive Convolu-
tional Coding for Near-Capacity Performance,” Comm. Theory Mini-Conference,
GLOBECOM ’93, Houston, Texas, December 1993.

[3] G. Battail and R. Sfez, “Suboptimum Decoding Using the Kullback Principle,”
Lecture Notes in Computer Science, vol. 313, pp. 93–101, 1988.

[4] S. Benedetto, “Unveiling Turbo Codes,” IEEE Communication Theory Work-
shop, Santa Cruz, California, April 23–26, 1995.

[5] S. Benedetto and G. Montorsi, “Design of Parallel Concatenated Convolutional
Codes,” to be published in IEEE Transactions on Communications, 1996.

[6] S. Benedetto and G. Montorsi, “Performance Evaluation of Turbo-Codes,” Elec-
tronics Letters, vol. 31, no. 3, pp. 163–165, February 2, 1995.

[7] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-
Correcting Coding: Turbo Codes,”Proc. 1993 IEEE International Conference
on Communications, Geneva, Switzerland, pp. 1064–1070, May 1993.

[8] D. Divsalar and F. Pollara, “Turbo Codes for Deep-Space Communications,”
The Telecommunications and Data Acquisition Progress Report 42-120, October–
December 1994, Jet Propulsion Laboratory, Pasadena, California, pp. 29–39,
February 15, 1995.
http://tda.jpl.nasa.gov/tda/progress report/42-120/120D.pdf

[9] D. Divsalar and F. Pollara, “Multiple Turbo Codes for Deep-Space Communica-
tions,” The Telecommunications and Data Acquisition Progress Report 42-121,
January–March 1995, Jet Propulsion Laboratory, Pasadena, California, pp. 66–
77, May 15, 1995.
http://tda.jpl.nasa.gov/tda/progress report/42-121/121T.pdf

[10] D. Divsalar and F. Pollara, “Turbo Codes for PCS Applications,” Proceedings of
IEEE ICC’95, Seattle, Washington, pp. 54–59, June 1995.

[11] D. Divsalar and F. Pollara, “Turbo Codes for Deep-Space Communications,”
IEEE Communication Theory Workshop, Santa Cruz, California, April 23–26,
1995.

[12] D. Divsalar, S. Dolinar, R. J. McEliece,and F. Pollara, “Transfer Function
Bounds on the Performance of Turbo Codes,” MILCOM 95, San Diego, Cali-
fornia, November 5–8, 1995.

119

[13] S. Dolinar and D. Divsalar, “Weight Distributions for Turbo Codes Using Ran-
dom and Nonrandom Permutations,” The Telecommunications and Data Ac-
quisition Progress Report 42-122, April–June 1995, Jet Propulsion Laboratory,
Pasadena, California, pp. 56–65, August 15, 1995.
http://tda.jpl.nasa.gov/tda/progress report/42-122/122B.pdf

[14] S. W. Golomb, Shift Register Sequences, Revised Edition, Laguna Beach, Cali-
fornia: Aegean Park Press, 1982.

[15] J. Hagenauer and P. Robertson, “Iterative (Turbo) Decoding of Systematic Con-
volutional Codes With the MAP and SOVA Algorithms,” Proc. of the ITG Con-
ference on Source and Channel Coding, Frankfurt, Germany, pp. 1–9, October
1994.

[16] S. LeGoff, A. Glavieux, and C. Berrou, “Turbo Codes and High Spectral Ef-
ficiency Modulation,” Proceedings of IEEE ICC’94, New Orleans, Louisiana,
pp. 645–651, May 1–5, 1994.

[17] M. Moher, “Decoding Via Cross-Entropy Minimization,” Proceedings GLOBE-
COM ’93, Houston, Texas, pp. 809–813, December 1993.

[18] A. S. Barbulescu and S. S. Pietrobon, “Terminating the Trellis of Turbo-Codes
in the Same State,” Electronics Letters, vol. 31, no. 1, pp. 22–23, January 1995.

[19] P. Robertson, “Illuminating the Structure of Code and Decoder of Parallel Con-
catenated Recursive Systematic (Turbo) Codes,” Proceedings GLOBECOM ’94,
San Francisco, California, pp. 1298–1303, December 1994.

[20] G. D. Forney, Jr., “Convolutional Codes I: Algebraic Structure,” IEEE Trans-
actions on Information Theory, vol. IT-16, pp. 720–738, November 1970.

[21] G. Ungerboeck, “Channel Coding With Multi-Level Phase Signals,” IEEE Trans-
actions on Information Theory, vol. IT-28, pp. 55–67, January 1982.

120

Appendix

A Bound on the Weights of Shift Register Cycles 1

I. Introduction

A maximum-length linear shift register sequence—a pseudonoise (PN)-sequence or a maximal length
(m)-sequence—of degree m has period p = 2m − 1, with 2m−1 ones and 2m−1 − 1 zeroes in each period.
Thus, the weight of a PN cycle is 2m−1. From a linear shift register whose characteristic polynomial is
reducible, or irreducible but not primitive, in addition to the “zero-cycle” of period 1, there are several
other possible cycles, depending on the initial state of the register, and each of these cycles has a period
less than 2m − 1.

The question is whether it is possible for any cycle, from any linear shift register of degree m, to have
a weight greater than 2m−1. We shall show that the answer is “no” and that this result does not depend
on the shift register being linear.

II. The Main Result

Let S be any feedback shift register of length m, linear or not. We need not even specify that the
shift register produce “pure” cycles, without branches. We will use only the fact that each state of the
shift register has a unique successor state. For any given initial state, we define the length L of the string
starting from that state to be the number of states, counting from the initial state, prior to the second
appearance of any state in the string. (In the case of branchless cycles, this is the length of the cycle with
the given initial state.)

The string itself is this succession of states of length L. The corresponding string sequence is the
sequence of 0’s and 1’s appearing in the right-most position of the register (or any other specific position
of the register that has been agreed upon) as the string goes through its succession of L states.

Theorem 1. From a feedback shift register S of length m, the maximum number of 1’s that can
appear in any string sequence is 2m−1.

Proof. There are 2m possible states of the shift register S altogether. In any fixed position of the shift
register, 2m−1 of these states have a 0 and 2m−1 states have a 1. In a string of length L, all L of the states
are distinct, and in any given position of the register, neither 0 nor 1 can occur more than 2m−1 times.
In particular, the weight of a string sequence from a register of length m cannot exceed 2m−1. ❐

Corollary 1. No cycle from a feedback shift register of length m can have weight exceeding 2m−1.

1 S. W. Golomb, personal communication, University of Southern California, Los Angeles, California, 1995.

121

